All the many layers

Published on by Catherine Toulsaly

Titan's many layers (NASA/JPL/Space Science Institute)

Titan's many layers (NASA/JPL/Space Science Institute)

Very well, you may smile at this; but you must admit that the model of the world developed here is at least a possible one… It also gives an incentive, not only to speculation but also to experiments…

Ludwig Boltzmann, Lectures on Gas theory

I have felt before that imagination is a double-edged sword, lighting up the path to reality and distorting it at the same time. While we may feel mesmerized by the imaginative power of others, we know our own to be involved in a tug-of-war with reason.

The back-and-forth between attractors and repellers in the three circles of dance left in my mind the image of individual streams of time, each with their own sense of being. While we follow a time path toward the Great Attractor, those in the zone of influence of the Dipole Repeller, who feel the repulsion of the Cold Spot Repeller, may be embarked in a time channel flowing in the opposite direction. Ludwig Boltzmann alluded briefly to a scenario in which processes would go in the opposite direction and living beings separated from us by aeons of time and spatial distances would feel the passing of time differently from us. 


Hans Reichenbach contemplated in more detail the possibility that after “reaching a high-entropy state and staying in it for a long time," during which “living organisms cannot exist," the Universe would enter a “long downgrade of the entropy curve, then, for this section, time would have the opposite direction.” He defined supertime in a similar way as Kerri Welch writes about timelessness. It has no direction, “only an order, whereas it contains individual sections that have a direction, though these directions alternate from section to section.” It would forever be unknown to the inhabitants caught in individual sections that their direction is different from ours. For all that we know, we could be unaware that such fated circumstances occurred before us. That no living organisms had existed in the time gap prior to our existence would explain the memory loss of a time in the opposite direction, wiped out from the conscious realm. 


Full moon

Full moon

Time, a recurrent subject in the dialogue between Consciousness and the Universe, is deeply embedded in our intuition. If the concept of existence cannot be applied to the quantum Universe where there is no “either-or,” I can’t imagine time being part of the picture either. If we could perceive nonclassical superpositions, we would see that any quantum state is a correlation of another. Timelessness and nonlocality paint in words the quantum Universe. Probabilities are the currency in which information circulates.

Frozen pond

Frozen pond

At the intersection of the quantum world and the macroscopic Universe is the field of statistics.  If we look at the essence of life, it is a statistical improbability on a colossal scale.“The true explanation for the existence of life,” Richard Dawkins writes, “must embody the very antithesis of chance.” It doesn’t mean that we need to look for answers in the realm of the improbable,  but to ‘tame’ chance means to break down the very improbable into less improbable small components. Peter Hertel argues, “There are no hidden variables”. The more we break down the very improbable, the more we mate quantum events to respect certain probabilities. When we say that quantum processes are ruled by probability, there appears to be a probability scale or distribution that we are made aware of. But if such a scale or distribution exists, it may be all about our own expectations.

Calculating expectation values is the task of quantum theory, not more, not less.

Peter Hertel, Quantum Theory and Statistical Thermodynamics

While probability, I recall, is said to be an operational concept, a philosophical category, decoherence and collapse represent, on the other hand, a technical approach more than a philosophical point of view. They are key concepts in the quantum-to-classical transition. Decoherence serves as a human tool that allows the conscious mind to determine how and when the quantum probability distributions approach the classically expected distributions. I will come back to the concept of collapse at some point in the future. But for the time being, I’ll focus on what decoherence means.


Wojciech H. Zurek, Decoherence and the Transition from Quantum to Classical—Revisited

Wojciech H. Zurek, Decoherence and the Transition from Quantum to Classical—Revisited

Decoherence, Dieter Zeh writes, is the dynamical dislocalization of quantum mechanical superpositions — of what is “somehow all at once” — through the formation of entanglement of any system with its unavoidable environment. It describes, Maximilian Schlosshauer adds, how entangling interactions with the environment influence the statistics of results of future measurements on the system. However, entanglement isn’t just a statistical correlation between local objects. It becomes reality itself. 

It is generally understood that a measurement involves an amplification of a microscopic superposition into the macroscopic realm by means of entanglement, followed by decoherence by the environment…

The Two-Time Interpretation and Macroscopic Time-Reversibility

Environmental interferences bind together time and phenomena. Because quantum systems are never completely isolated from their environment, Schlosshauer explains, when a quantum system interacts with it, what it becomes entangled with is a large number of environmental degrees of freedom. This entanglement influences what we can locally observe upon measuring the system. In the interactions with the unavoidable environment, not just matter and the conscious mind exist, but the information channel — part of past and present information on which path was taken — is also known.


Bits of time perspectives tenaciously endure. If it were not for the second law of thermodynamics under which the Universe operates and without causality, will time still slip away in the macroscopic Universe? The term coarse-graining was introduced by Boltzmann in 1872 in the context of thermodynamics. While quantum phenomena provide a source of entropy — defined as entanglement entropy — it is distinct from the classical one generated by coarse-graining. Any particular event may be an instance of a lot of different coarse-grained events, Antony Eagle argues. Carlo Rovelli uses the concept of coarse-graining to highlight how interactions within the Universe creates the perspectival aspect of time. 


Arrows of perspectival time derive from the quantum Universe. Superpositions, though, do not cease to exist, even though they are not there anymore. From neither-nor, coherence and decoherence take turns in harmony. My mind wanders as it visualizes layers of time and space, all at different decay times. In the kinematically nonlocal Universe where time-dependent scenarios emerge, the collective kinetic energy bounces around and back.  




Hans Reichenbach, The Direction of Time 

Julian Barbour, The Janus Point 

Richard Dawkins, The Blind Watchmaker

Share this post

The Essence of Information

Published on by Catherine Toulsaly

Complex, Nelleke Beltjens

Complex, Nelleke Beltjens

Do processes like fractals mirror each other from one end of the Universe to the other? Stars springing out of darkness is a metaphor for ourselves. Complexity tells the continued story of a behavioral trait that spreads from the Big Bang to the fabric of our societies. It appears, though, impossible to predict based on its main build blocks alone the observable clustering properties of the Universe. How small variations on the set of cosmological parameters could produce a more complex evolution of large-scale structures remains one of the main issues for astrophysicists like Franco Vazza.


…any physical phenomenon can be regarded as an information processing device, whose evolution produces a sequence of outputs (e.g. energy states), which can be analysed through symbolic analysis.

Franco Vazza


For scientists like Julian Barbour, stars are fossil-like objects. For me, they are living things. I cannot look at the night sky and think it is an archeological field. Barbour asserts that entropy is better defined as a measure of complexity rather than of disorder. One does not exclude the other, I suppose. “This is perfectly true at the microscopic level,” explains Barbour, but not at macroscopic scale. Complexity appears messy, chaotic at first as an evolving system enters a new threshold. Its complexity grows inwards and outwards. 


Guided by a thread of hope on the outside and a sense of harmony within, I wrestle with the words ‘darkness’ and ‘complexity’ as if they ought to say something more. Darkness is sadness that’s slowly sinking in once anger and uproar have settled. “Violence, ” writes Martin Luther King, “is the antithesis of creativity and wholeness.” We are blind moles weighted down by the burden of ignorance, hoping to see in the mirror that stands at the Janus point the reflection of our wings. Within darkness and complexity lies the essence of information, a path to differentiate all aspects of reality.


I had a dream, which was not all a dream.

The bright sun was extinguish'd, and the stars

Did wander darkling in the eternal space,

Rayless, and pathless, and the icy earth

Swung blind and blackening in the moonless air;

Morn came and went—and came, and brought no day,

And men forgot their passions in the dread

Of this their desolation; and all hearts

Were chill'd into a selfish prayer for light:

And they did live by watchfires—and the thrones,

The palaces of crowned kings—the huts,

The habitations of all things which dwell,

Were burnt for beacons; cities were consum'd,

And men were gather'd round their blazing homes

To look once more into each other's face;

Happy were those who dwelt within the eye

Of the volcanos, and their mountain-torch:

A fearful hope was all the world contain'd;

Forests were set on fire—but hour by hour

They fell and faded—and the crackling trunks

Extinguish'd with a crash—and all was black.

The brows of men by the despairing light

Wore an unearthly aspect, as by fits

The flashes fell upon them; some lay down

And hid their eyes and wept; and some did rest

Their chins upon their clenched hands, and smil'd;

And others hurried to and fro, and fed

Their funeral piles with fuel, and look'd up

With mad disquietude on the dull sky,

The pall of a past world; and then again

With curses cast them down upon the dust,

And gnash'd their teeth and howl'd: the wild birds shriek'd

And, terrified, did flutter on the ground,

And flap their useless wings; the wildest brutes

Came tame and tremulous; and vipers crawl'd

And twin'd themselves among the multitude,

Hissing, but stingless—they were slain for food.

And War, which for a moment was no more,

Did glut himself again: a meal was bought

With blood, and each sate sullenly apart

Gorging himself in gloom: no love was left;

All earth was but one thought—and that was death

Immediate and inglorious; and the pang

Of famine fed upon all entrails—men

Died, and their bones were tombless as their flesh;

The meagre by the meagre were devour'd,

Even dogs assail'd their masters, all save one,

And he was faithful to a corse, and kept

The birds and beasts and famish'd men at bay,

Till hunger clung them, or the dropping dead

Lur'd their lank jaws; himself sought out no food,

But with a piteous and perpetual moan,

And a quick desolate cry, licking the hand

Which answer'd not with a caress—he died.

The crowd was famish'd by degrees; but two

Of an enormous city did survive,

And they were enemies: they met beside

The dying embers of an altar-place

Where had been heap'd a mass of holy things

For an unholy usage; they rak'd up,

And shivering scrap'd with their cold skeleton hands

The feeble ashes, and their feeble breath

Blew for a little life, and made a flame

Which was a mockery; then they lifted up

Their eyes as it grew lighter, and beheld

Each other's aspects—saw, and shriek'd, and died—

Even of their mutual hideousness they died,

Unknowing who he was upon whose brow

Famine had written Fiend. The world was void,

The populous and the powerful was a lump,

Seasonless, herbless, treeless, manless, lifeless—

A lump of death—a chaos of hard clay.

The rivers, lakes and ocean all stood still,

And nothing stirr'd within their silent depths;

Ships sailorless lay rotting on the sea,

And their masts fell down piecemeal: as they dropp'd

They slept on the abyss without a surge—

The waves were dead; the tides were in their grave,

The moon, their mistress, had expir'd before;

The winds were wither'd in the stagnant air,

And the clouds perish'd; Darkness had no need

Of aid from them—She was the Universe.


Lord Byron, Darkness


Words are chained to each other. Concepts circle in my head. I wonder whether they intersect. The infinite game of space, time, and gravity has formed the first circle. The past discussion on freedom, existence, and essence has created another. A post on agency, sentience, and consciousness has added a third. Since Rudolf Claudius invented the word entropy so as to be as similar as possible to the word energy, I imagine a fourth circle that naturally brings together entropy, energy, and information. We see the Universe as “a succession of snapshots that you might take on a walk through the countryside,” while the quantum Universe forces you to consider “somehow all at once,” writes Barbour. In a way, the table below is the first step I take to rearrange snapshots in my head.















Information is a bottomless ocean where it is easy to get lost. On the one hand, we are swept away by currents; on the other, we can’t discriminate between all the many sources. We know too well that it is above all important to learn to think, reflect, and reason. This is what Benjamin Franklin worked on at an early age with the reading of two fundamental works: The essay on human understanding by John Locke and The logic, or, art of thinking by Antoine Arnaud and Pierre Nicole. 


More than 300 years later, it is even harder to find our way through the labyrinth of ideas and concepts. The information philosopher Kun Wu (邬焜) divides information into three different forms: information-in-itself, information-for-itself, and regenerated information. Concepts belong to the third category. Not only do circles intersect with each other, but they collapse into three new interconnected groups that help reconfigure in my head bridges between concepts.


Simplicity is not a winding road,
nor else a bridge across a river's span;
the days do tell of mysteries to decode,
which you and I must tackle, as we can.

The winter snow's no longer pure and white,
and season's, too, are strikers to the core:
sometimes it seems our world is one of spite,
we're afterthoughts in life and little more.

Complexity's an awkward kind of coil,
and narrow minds will often miss the gap;
the fool will fail, himself become the foil,
his flexuous foot that often springs the trap.

Richard Doiron, Simplicity is not a winding road


I have reflected in the past on the Universe’s expanding waist fed by microscopic degrees of freedom. They are spatiotemporal parameters that emerge into existence. If all other arrows could be derived from one arrow of expansion, writes Dieter Zeh, a physical observer would experience the direction of expansion as her future — which cannot be consistently remembered in contrast to part of her past. Degrees of freedom imply an element of free will. Could they be explained by process of give-and-take with the other side of the Janus Point?


Entropy describes the overall degree of energy spreading for the benefit of the Universe's own maintenance and its capacity to grow in an unexpectedly similar and/or differentiated manner. It measures its own agency. Could it be determined to be at “the same magnitude” consistently? While the uniformity of the Universe “at this scale in its current epoch is undoubtedly a significant fact,” writes Barbour, if one looks on smaller scales, the matter distribution in the Universe is “very far from uniform.”


Whether it be matter, consciousness, or information, there is, I feel, existence only in time. Time, writes John Peter Arendzen, is but the measure of phenomena, and by abstracting from phenomena, time ceases to be. Only then space and darkness remain. Because darkness is conceived as the “fluid filling the vessel” of space, it too could be abstracted. Only Void therefore remains. 


The difficulty with information comes from our inability to conceive that it exists on its own. In-itself information stresses that there is matter there is structure and there is information. If the existence of information implies the presence under a veil of form and content of indirect existence, only Void, indeed, remains in the absence of information. In this tightly woven web of concepts, freedom describes the distinctive nature of the existential field. In it, existence precedes the essence of information. 



Information is what Bateson calls “difference which makes a difference” born out of the process of info-autopoiesis. That which moves, including quantum fluctuations, leads conversely to that which exists from the mere existence of information to the rise of the sentient Universe. A cloud in the sky, a planet with a crystalline mantle, feel the push and pull of gravity. Could they, too, be sentient beings? From existence to sentience, it is a matter of information. 


If there is a Janus Point, what binds us to the mirroring Universe on the other side? A negative-mass fluid or dark energy lies in the shadow of the open and public Universe. Barbour points out that the quest for quantum gravity is almost entirely bereft of experimental support. “In its absence, theoreticians can only fall back on whatever principles seem sound and come to hand.” Information entropy describes a degree of randomness. What has yet to know about its own existence reveals itself by expressing itself. A paper last year describes cosmic inflation in terms of a time-dependent quantum density matrix with time playing the role of a stochastic variable.


Conscious beings have found themselves amid fundamental processes that underpin the observed richness of the large-scale cosmic structures. Is humankind the only entity to display such a conscious awareness? I don’t know. But what I know is that we are bound to make tracks and leave footprints in time, taking part in the difference that makes a difference. And so doing, we participate in the complexification process.

When day comes, we ask ourselves, where can we find light in this never-ending shade?

The loss we carry. A sea we must wade.

We braved the belly of the beast.

We’ve learned that quiet isn’t always peace, and the norms and notions of what “just” is isn’t always justice.

And yet the dawn is ours before we knew it.

Somehow we do it.

Somehow we weathered and witnessed a nation that isn’t broken, but simply unfinished.

We, the successors of a country and a time where a skinny Black girl descended from slaves and raised by a single mother can dream of becoming president, only to find herself reciting for one.

And, yes, we are far from polished, far from pristine, but that doesn’t mean we are striving to form a union that is perfect.

We are striving to forge our union with purpose.

To compose a country committed to all cultures, colors, characters and conditions of man.

And so we lift our gaze, not to what stands between us, but what stands before us.

We close the divide because we know to put our future first, we must first put our differences aside.

We lay down our arms so we can reach out our arms to one another.

We seek harm to none and harmony for all.

Let the globe, if nothing else, say this is true.

That even as we grieved, we grew.

That even as we hurt, we hoped.

That even as we tired, we tried.

That we’ll forever be tied together, victorious.

Not because we will never again know defeat, but because we will never again sow division.

Scripture tells us to envision that everyone shall sit under their own vine and fig tree, and no one shall make them afraid.

If we’re to live up to our own time, then victory won’t lie in the blade, but in all the bridges we’ve made.

That is the promise to glade, the hill we climb, if only we dare.

It’s because being American is more than a pride we inherit.

It’s the past we step into and how we repair it.

We’ve seen a force that would shatter our nation, rather than share it.

Would destroy our country if it meant delaying democracy.

And this effort very nearly succeeded.

But while democracy can be periodically delayed, it can never be permanently defeated.

In this truth, in this faith we trust, for while we have our eyes on the future, history has its eyes on us.

This is the era of just redemption.

We feared at its inception.

We did not feel prepared to be the heirs of such a terrifying hour.

But within it we found the power to author a new chapter, to offer hope and laughter to ourselves.

So, while once we asked, how could we possibly prevail over catastrophe, now we assert, how could catastrophe possibly prevail over us?

We will not march back to what was, but move to what shall be: a country that is bruised but whole, benevolent but bold, fierce and free.

We will not be turned around or interrupted by intimidation because we know our inaction and inertia will be the inheritance of the next generation, become the future.

Our blunders become their burdens.

But one thing is certain.

If we merge mercy with might, and might with right, then love becomes our legacy and change our children’s birthright.

So let us leave behind a country better than the one we were left.

Every breath from my bronze-pounded chest, we will raise this wounded world into a wondrous one.

We will rise from the golden hills of the West.

We will rise from the windswept Northeast where our forefathers first realized revolution.

We will rise from the lake-rimmed cities of the Midwestern states.

We will rise from the sun-baked South.

We will rebuild, reconcile, and recover.

And every known nook of our nation and every corner called our country, our people diverse and beautiful, will emerge battered and beautiful.

When day comes, we step out of the shade of flame and unafraid.

The new dawn balloons as we free it.

For there is always light, if only we’re brave enough to see it.

If only we’re brave enough to be it.


Amanda Gorman, The Hill we climb

The Essence of Information

John Peter Arendzen, Summary of ancient cosmogonies

Julian Barbour, The Janus Point 

Gregory Bateson, Steps to an Ecology of Mind

Martin Luther King, Where do we go from here: Chaos or Community?

Share this post

The Arrow of Time

Published on by Catherine Toulsaly

What I see is four temporal dimensions: that which is, that which has passed, that which will be, and that which is always in the state of becoming. The first three are subjective. The latter is timelessness.


This past October, I mentioned that I would read Julian Barbour’s latest work. Lee Smolin is quoted to have said that it is simply the most important book he has read on cosmology in several years. What I appreciate in anyone’s writing — and I am only at the beginning of it — is the wealth and the extent of information that creates a sense of harmony. Barbour reminds us that Sir Arthur Stanley Eddington, known for his insightful description of individuals as four-dimensional objects of greatly elongated form with “considerable extension in time and insignificant extension in space,” coined the expression ‘arrow of time.’ At this juncture, I feel the need to write another series of transitional thoughts triggered by the start of Barbour’s essential work. They will help, I hope, with reorganizing concepts and ideas in my head. Needless to say that I will devote the next few posts to it. 


My previous article on Neptune brought me back to the utmost importance of the act of experiencing. Barbour lost his wife and daughter in the midst of writing his latest book on time. I can’t imagine that those tragic events did not mold his personal view of both worlds, the physical and the experiential. It is not that we need to paint the Universe with one brush instead of the other. We need both for the picture to be whole and complete. We feel so powerless as we experience the passage of time on a one-way ticket to a point of no return, whether that be nothingness or whatever we call the other side. The bond between Consciousness and the Physical Universe is, I feel, the most important subject within the mystery of time.


The signs of age are on the moon. It seems pitted, torn, and rent by the past action of long-dead fires, till its surface is like a piece of porous cinder of a planet, which rolls through the void like a ruin of what has been...

S.P. Langley, The Planets and the Moon

How the “arrow of time gets into things so profoundly” is as much a scientific puzzle as it is a philosophical enigma. Scientists struggle to reconcile symmetric laws with irreversible series of events that produce asymmetric results. Janus point  — that is the title of Barbour’s book — refers to the Big Bang “on either side of which the universe’s size increases.” Barbour seems to point to a process that happens simultaneously. Time no longer has one direction, but instead has two “from a common past at the Janus point to two futures in the two directions away from it.”The laws of Nature, writes Vlatko Vedral, are information about information, and outside of it, there is darkness. In a way, Barbour is investigating what ‘darkness’ may be. The reason why it feels like time is unidirectional is the seemingly infinite length of the arrow we stand on, which left us unable to fathom what the other side looks like. 


Barbour introduces an entropy-like quantity called entaxy that reflects the growth of complexity. The expansion of the Universe seems concomitant with the increase of its complexity. The thing with complexity is that it lacks uniformity across the Universe. From our limited observational capabilities, life as we know it is far more likely to get stuck at the bacterial level of complexity, asserts Nick Lane. We could allow our poetic selves to compare complexity-based systems such as a comet, a planet, or a star with Earth-based biological organisms, but that would not be the same. Complexity is darkness.


The planets must find their way through the void like the birds through the air.

Johannes Kepler

Reading gives me a chance to look through an optical prism from a different angle, with each time a new sense of wonder. Astronomers, writes Barbour, “do not see the Universe expanding; they see it changing its shape and from that deduce its expansion.” It reminds me of what Sharon Glotzer said, that there’s “something much more  fundamental to understand about the organization of matter, and by focusing on shape and entropy, we’re getting to the core of that.”Since entropy is, along with agency, one of the most difficult terms to understand, I’d like to review what ‘entropy’ means.  As time emerges from timelessness at the Big Bang and every time a particle/antiparticle pair is created or a new life begins, writes Kerri Welch, gravity emerges from a microscopic description “that doesn’t know about its existence,” adds Erik Verlinde so eloquently. The link between the Universe without gravity and the Universe with gravity is information  “measured in terms of entropy.” The expansion of the Universe reveals three intertwined fundamentals: gravity, information, and entropy in a process that has allowed the synchronic conversion of information into energy. 

I have intentionally formed the word entropy so as to be as similar as possible to the word energy; for the two magnitudes to be denoted by these words are so nearly allied in their physical significance that a certain similarity in designation appears to be desirable.

Rudolf Claudius, quotation from Janus Point, p.40



On the one hand, if entropy is a transformation value, shouldn’t it imply a primary focus on processes rather than on entities? Flows within one flow are processes occurring in the phenomenological realm of the Universe from one given time to the next. In the discussion on content and process, the avant-gardist Carlo Rovelli seems to be instinctively aware that there is neither space nor time, only processes that transform physical quantities. If entropy is indeed so abstract and difficult to visualize, it may be because, in the organized manifestation of the life of feelings, there is not just a difference of form but also content. We can think of the state of a system in the past as a 'preparation' and the future as the outcome, hoping to predict what ‘darkness’ or ’complexity’ is. On the other hand, if entropy is regarded as a probability of particle arrangement, it relates to a state of arrangement and particle movement and, in that sense, reminds me of what agency means, that is the setting of physical associations and the implied ability to make choices from one given time to the next.


With that being said, entaxy refers to the growth of complexity in the Universe that includes “the formation of previously nonexistent subsystems that become effectively self-confined,” writes Barbour. Even those subsystems appear to form in the two directions simultaneously. Barbour not only follows Ludwig Wittgenstein’s footsteps for whom the “sense” of the Universe lies outside the reality of the one coherent and public Universe where “everything is as it is and happens as it does happen.” As he zooms out of the Universe and surveys it from a higher vantage point,  what he has done is following the footprints of time. Events still occur within some form or another of space or/and time. It appears to differ from what Stuart Kauffman defines as res potentia that is before the Big Bang outside of any space but inside of time. 


Could an observer, convinced that the “sense” of the Universe must lie beyond, crawl outside and come back with the tale of the zygote constrained within the walls of a transparent membrane? If space-time is the record of physical reality, it is only one aspect of reality in the infinite game of space, time, and gravity.

The Process of Becoming

Never mind Rovelli and others’ idealism. Reason had become our chief instinct and caused us to act as transcendental correlationists for whom what exists outside the correlation is nothing but indeterminacy, as Alexander Wilson noted. Blurred vision, when faced with the absence of spacetime, explains our failure to distinguish not just what is unknown but what is unimaginable. If time existed on the other side of a cosmological singularity, no matter which fundamentals of reality take part in the circle of concepts and whether some are co-emergent,  it would bring me to the same conclusion of my first transitional thoughts that time comes first. Timelessness hosts the passage of time. From a point in the past — a pre-big-bang phase — remnants of a black hole gave birth to a primordial white hole bursting at once in a bouncing scenario.


Human consciousness, when it stands on the edge staring into oblivion, still can’t quite conceive any notion beyond spacetime. If neither space nor time exists, then can our experiential selves be the only ones to know? I remain cautious, once again, keeping in mind that I ought to go deeper. Barbour’s book provides me with the opportunity to do so. I’ll see what his take is on matters such as white holes crossing over through spacetime or from one universe to the next, wormhole structure between a black hole and a white hole, and the role of dark matter in the Early Universe.  


Share this post


Published on by Catherine Toulsaly

Neptune (NASA/JPL)

Neptune (NASA/JPL)

Using predictions made by the French Urbain Le Verrier, Johann Galle at the Berlin Observatory discovered Neptune in 1846. The amateur astronomer William Lassell spotted one of its Moon, Triton, 17 days after Neptune’s discovery. Which pitch would have Boethius assigned to Neptune, had he known about the blue planet? Today Neptune is said to have 14 moons, all captured objects. Would the existence of Neptune, Uranus, and Pluto have transformed Kepler’s musical composition? Has anyone tried since to build on his original work? Beyond what is possible to be reasonably thought, beyond consciousness, Neptune already existed in the background, waiting to be spotted to join the symphony. 


Neptune and Triton (NASA/JPL/USGS)

Neptune and Triton (NASA/JPL/USGS)

Johannes Kepler lived at a time when astronomy and astrology collided. He was a proponent of a “theory of astrology freed from superstition”. He lived coincidently through another great conjunction of Saturn and Jupiter. I wonder how astrology relates to astronomy. Can the Sun and other celestial objects revolving around it have an impact on humans’ behavior?  The late integration of Uranus, followed by Neptune and Pluto to the astrological discourse and the reverse status of Pluto —which is no longer recognized as a main planet but rather as a Kuiper belt object — makes it all the more doubtful that astrology could be a reliable system of knowledge. 


If, for example, Pluto’s influence is based on its size, it is actually less massive than Jupiterian moons Io, Europa, Ganymede, and Callisto, Neptune's Triton, and Saturn's Titan. If it is because it revolves around the Sun, it begs the question of whether the addition of all the Trans-Neptunian Objects and comets would make astrological data more accurate. To keep up with the flow of astronomical discoveries, Ceres, Chiron, Pallas, and Juno were later added to the astrological discourse. 




Maybe the difference between astronomy and astrology stems from the difference between the physical world and the experiential world. Because of its lack of operational efficiency, we have assumed that astrology doesn’t work. As a scientific study, astronomy explains the cosmos’ physical characteristics, while astrology intends to frame how we experience it. In her 2018 book entitled Error and Loss, Ashley Curtis outlined her intuitive approach to reality and claimed that “reason has become our chief instinct”, but “not because it leads to knowledge of an objective reality, but simply because it works”. This “idea of reason as so transparently truth-delivering that it needs no justification” is an evolutionary advantage that we have embraced. The problem with reason is that it reflects our assumptions about what we consider reasonable more than reality itself. She concludes that “our real search for truth and meaning cannot but be experiential.” 


I usually shy away from words like truth, for I am unsure that there is an ultimate truth, and I believe in myriads of bits of experience and feeling in the Universe, each with their own subjective view. Truth isn’t on the list of words, like avoidance, nothingness, and beyond, that cast a spell on me, for my truth is beyond. Beyond distance, beyond the horizon. Beyond the reach of imagination, beyond the heliosphere. Beyond appearance, beyond physical reach. Beyond the known world, beyond our earthly life. Beyond ourselves, beyond the grave.  Beyond reality, beyond possibility. Beyond hope, beyond illusions. Beyond limits, beyond understanding. Beyond individual needs, concerns, bubbles, and beyond the visible. 


But I agree with Ashley Curtis’ conclusion that to satisfy our search for answers, “rather than reasoning towards ultimate propositions” with a mathematical or philosophical language, “we need to experience as deeply, richly, fully as we can.” And that’s where I sense Thomas’ experience with consciousness comes in if we are to believe that within ourselves lies a blueprint of the solar system, if not the Universe. If there is such a thing that resonates inside us and lies within the dynamic interaction with the physical Universe, the individual consciousness may feel isolated because reasoning has drifted apart from feeling. That resonance might help explain the nature of astrological influence.

We are left with a licence to enchantment.

Ashley Curtis, Error and Loss

Still soaked in a Keplerian atmosphere, I wonder about the Universe's sense of harmony. In astrological terms, I am Neptunian for my love of the unknown and my exploration of the foreign. Neptune is the eighth and most distant planet of the solar system. It may have been formed by core accretion much closer to the Sun, in a colder part of the solar nebula than Jupiter and Saturn. It may even have switched position with its companion Uranus. Now located at around 930 million miles away from Uranus, 30 times as far from the Sun as Earth, it takes 165 Earth years to orbit the Sun.


Mercury, Venus, Earth and Moon, Mars, Jupiter, Saturn, Uranus and Neptune (NASA/JPL)

Mercury, Venus, Earth and Moon, Mars, Jupiter, Saturn, Uranus and Neptune (NASA/JPL)

Neptune, whose apparent size in our sky is roughly a factor of 10 smaller than Jupiter and Saturn, has at least five main rings and four more ring arcs, which are clumps of dust and debris likely formed by the gravity of a nearby moon. It experiences seasons just like Earth does. Are they seasons of feeling such as those painted by Frank Weston Benson (in the circular panels on the South wall of the Library of Congress building)? Does Neptune feel the joy of anticipation during spring and the urge to possess in summer? Is its joy waning in the fall? And does it learn to embrace acceptance in winter? Each of the four seasons lasts for over 40 years.


Its internal energy may be the outcome of massive and dense projectiles that penetrated towards the center and deposited mass and energy in the deep interior. It is suggested that molecular condensation into clouds led to the formation of a number of atmospheric superadiabatic regions in the middle and deep atmosphere, resulting in the deep interior being hot. However, the evidence is mounting against a Neptunian scenario with an adiabatic interior with distinct layers. Neptune may display a gradual distribution of heavy materials and water. Its internal heat source is smaller than those of Jupiter and Saturn, resulting in a much lower capacity to power internal convection.


Deeper energy mechanisms may also point to an ocean of super-hot water under Neptune's frigid atmosphere that does not boil away because of incredibly high pressure that keeps it locked inside. Such internal energy enables the unraveling of powerful winds and rapidly evolving storms fueled by methane condensation and characterized by a strong eastward jet at the equator at speeds of more than 1,200 mph. In comparison, Earth's most powerful winds hit only about 250 mph. Neptune, whose obliquity of 30 degrees is thought to be the result of giant collisions during formation, possesses a tilted magnetic field whose interaction with the solar wind shapes an asymmetric and dynamical magnetosphere. It also radiates complex auroral emissions.


Overall, many questions remain notably about the nature of the interaction between Neptune's very shallow ionosphere, its thermosphere, and magnetosphere and about the process responsible for the elevated temperatures observed in the upper atmosphere. We may have to wait until the 2030s or beyond for ESA or NASA to send a spacecraft with an atmospheric probe to orbit the sub-giant. Until then, next-generation telescopes like the James Webb will provide more clues. So far, we have remotely observed that its envelope possesses highly supersolar metallicities. It is made up mostly of hydrogen and helium with smaller fractions of heavy elements such as carbon in the form of methane. In 1991, it was determined that Neptune emits around 2.6 times the energy it receives from the Sun, which is the highest of any planet in the solar system. That is what gives it that overluminous appearance. Methane, in particular, gives Neptune its blue color. After all, I may be Neptunian, for blue is the color of my heart.


Neptune (NASA/JPL)

Neptune (NASA/JPL)

Share this post

Cosmic Harmony

Published on by Catherine Toulsaly

The three rings of Love and Light. Each for a maiden so pure and bright. Winter, Spring, and Fall.

Happy is the Lady of Flowers to have the man of her dreams, her hair like black silk, her skin like golden sun flowers, her words that flow like crystal clear rivers, her smell is lilacs and honey. Sweet to taste. Luscious is she.

Precious is the Lady of Snow. So fragile and clean. Pure in heart and clearly serene, her pale white skin twinkles in the night, her hair is curly. Love at first sight of the Stellar star night. Her words are cold but her heart is warm enough to kindle a fire. Her lips enticing to love. To welcome new life and Spring.

How great is the Lady of Colors to hold all three rings. Of Love and Light. To give them out and not think twice. Her voice is Music to Ones ears to make a Man fall head over heels. She knows the time to love and she knows the time of fear. She paints the leaves and the sky. She moves like a beautiful dance. She knows the time to be cold; she knows the time to be lukewarm. Her hair is of burning fire. Lovely is she and always in my heart is tied with three rings. Platinum, diamond, and gold.

I give to One of them. Never to part. The One I love across the hall left her clothes in my heart. The One that walks in the nights hall hides to Ones dismay. I look for the One I love just to find there all from Heaven above. I can smell the One in my dreams. At first sight is everything. How can I love another so beautiful and stellar? Free me from these earthly desires with a halo above my head. I pick the One in Heaven instead even though he hides in the dark, dying from a broken heart...

Three rings of Love by Hunter Anderson

Melancholy, or the Spirit of Man in Search of the Secret of the Universe. This Dürer’s etching, dating from 1514 according to the numbers in the square in the top right corner, depicts man contemplating the nature of the world in the state of melancholy, which in medieval times was associated with black bile and the planet Saturn. The winged man prefigures Johannes Kepler’s interrogations as he calculates how to express the underlying harmony of the cosmos using spheres and polyhedra. The bright light in the sky is the great comet that was observed in the winter of 1513-1514 (Jean-Pierre Luminet, Science, Art and Geometrical Imagination)

Melancholy, or the Spirit of Man in Search of the Secret of the Universe. This Dürer’s etching, dating from 1514 according to the numbers in the square in the top right corner, depicts man contemplating the nature of the world in the state of melancholy, which in medieval times was associated with black bile and the planet Saturn. The winged man prefigures Johannes Kepler’s interrogations as he calculates how to express the underlying harmony of the cosmos using spheres and polyhedra. The bright light in the sky is the great comet that was observed in the winter of 1513-1514 (Jean-Pierre Luminet, Science, Art and Geometrical Imagination)


I do prefer poetry, for poets are drawn to sensible harmonies. Poetry senses bits of feeling, describes what the eyes of the mind see, turns ideas on their heads, and whispers sounds of freedom. To the caterpillars unaware of butterflyhood who believe that all experiences can be explained rationally, the irreverence of poetry leads the way. In the midst of fragmented reality where everything we encounter becomes one thing or another, with each thing outside the other, and all things separate from one another, authentic wholeness flows into the whole through the parts and back again.  

This two-year blog has been an interstice of unreason and will be briefly felt, then passing in the timeless Universe. It has undertaken a long work of understanding and incorporating an infinite number of points of view on the nature of the bond between the Universe and Consciousness. It is meant to initiate a dialogue with sensitive beings and creative souls and will continue to unfold like an imaginal puzzle that makes sense on one level, nonsense on another. I let readers decide where reality hides and fiction lies and I thank those who have joined this dialogue. Your perspective on the subject is inspiring.


Allen Ginsberg entered a state of reverie while reading William Blake’s poem ‘Ah Sunflower’ in his New York apartment. The atmosphere changed and he heard the voice of Blake read out the verse. He spent his life trying to recapture that feeling through poetry, altered states and spiritual practices, recognizing that Blake was his guru.

William Rowlandson,‘“Interstices of Unreason” and the Imaginal: an Exploration’


Lately, I wonder whether the Universe communicates with sounds of music, sounds that cannot be uttered in words. As with Boethius who assigned a specific pitch to each planet, could the Earth be a soundscape made of ringing rocks responding to echoes of singing stars and faraway planets? There is a buzzing in our ears of multiple flows into one flow, strings of the Universe. Our inner infinity, endless depth within, reflects the endless depth of the Universe. Human Consciousness meets that of the Earth and the Sun and the Universe in the imaginal realm where imagination takes on genuinely transcendental capacities that allow making contact with what appears to be an entirely different order of mind or consciousness.


The Earth is one whole, living system: aspects of its cosmic environment impinge upon it, and effects in the terrestrial geology create further effects in its meteorology. Changes in its magnetic envelope can funnel further influences back to its geology. The whole system, as it resonates. All those forces and reactions play back and forth, creating responses, changes and echoes in all terrestrial structures and processes, from the most dense to the most subtle.

Paul Devereux


Indeed, I see the Universe as a symphony of lights and sounds played on the keyboard of time. Paul Devereux talked about earth lights -- geophysical-based manifestations of consciousness. They are not just products of the interaction between earth energies and the human witness, writes Simon Wilson, they are created by the interaction of countless cosmic forces, on the one hand, with the tangled workings of consciousness on the other. There is a discreet resonance within us of the whole cosmos, a music of rhythm and harmonious motion everywhere. 



To Eduard Heyning, the idea of ‘star music’ is a gateway to a different understanding of the Universe and a vehicle for a shift to another level of consciousness. In our search for the heart of the Universe, the depository of its soul, one fundamental principle of Pythagorean thought is the music of the spheres connecting music, mathematics, and celestial phenomena. Do stars, galaxies, and other bodies and aggregates like filaments make noise by friction as those emanations of light and sound rub on particles moving through the medium of spacetime?

Poets feel the emotion of time stirring the soul of the Universe. They listen to the pulsation of its heart, the murmur of its soul that is, in the words of Timaeus, interfused everywhere from the centre to the circumference of the Universe of which it is also the external envelopment. The body of the Universe is visible, but the soul is invisible, and partakes of reason and harmony. The individual soul needs a human body, just as the soul of the Universe must have the Universe as a body, and when the human dies, the human body returns to the Earth, and the human soul returns to the stars. Even in the Earth, there is a soul, wrote Johannes Kepler in his work Harmonices Mundi (1619).


Therefore, there shine forth in the soul of the Earth a kind of image…of the whole firmament, the bond of sympathy between heavenly and earthy things.

Johannes Kepler, The Harmony of the World


Ptolemy’s Harmonics synthesized musical learning on a scale comparable to his astronomical work. Boethius bespoke a philosophy of number that seeks to describe the order of the Universe as it was known at the time in its most basic terms. When we talk about fundamentals of reality, it seems that we have been looking for them all along. Today, what we call theory of everything was yesterday a theory of harmony whose goal was to combine mathematics, geometry, music, astronomy, and philosophy. The growing knowledge of our ever-expanding spatiotemporal surroundings has, continually, shifted the focus of our attention, but our intent remains the same. Poets and musicians alike rather have the expression of this order rendered into musical terminology while mathematicians, and scientists in general, wish to transcribe it into mathematical terms. The ultimate question is whether we all are fools trying to find order in the workings of a clueless Universe that reveals itself by expressing itself. Idealists look for harmony; realists just want to make sense of it all. I wish to go back to that sort of authentic wholeness in our search for answers.


Figure of Lady Philosophy crowned and seated on a throne with seven maidens who represent the disciplines of dialectic, rhetoric, grammar, music, arithmetic, geometry and astronomy (Herrad of Landsberg Hortus Deliciarium, f.32)

Figure of Lady Philosophy crowned and seated on a throne with seven maidens who represent the disciplines of dialectic, rhetoric, grammar, music, arithmetic, geometry and astronomy (Herrad of Landsberg Hortus Deliciarium, f.32)


Boethius distinguished three forms of harmony. The first kind, musica mundana, derives from the heavenly bodies’ harmonious movements, the balance of the four elements, and the seasons’ cyclical succession. Later on, in the footsteps of his predecessors, Kepler intended to reveal the harmonies in nature and in the motions of what was known at the time of the Universe. He proposed elaborate theories, beyond counting numbers, that connect geometry to music. He defined a string (chord) to be “not the line subtended by an arc of a circle, as in geometry, but any length which is capable of emitting a sound.” As a sound is elicited by motion, he added, a string is “to be understood in the abstract in reference to the length of any motion whatever, or to any other length whatever, even if it is conceived in the mind.” He asserted the necessity of the soul in order to establish the essence of harmony. Therefore, Kepler instilled a metaphysical ingredient in the relationship between numbers, geometry, and music.  


For it is indeed difficult to abstract mentally the distinctions, types, and modes of the harmonic proportions from musical notes and sounds, since the only vocabulary which comes to our aid, as is necessary to expound matters, is the musical one.

Johannes Kepler, The Harmony of the World


During the Romantic era, absolute music was defined as something that “cannot be heard with the ears, because it is pure form.” It is an abstract construct, “an idea that can be imposed on any object.” Eduard Hanslick writes that in the psyche of the one who listens, the beautiful in music unites “with all other grand and beautiful ideas.” Music affects the psyche as a “sounding reflection of the great motions of the cosmos.” And as Arthur Schopenhauer pointed out, we may regard the phenomenal Universe and music "as two different expressions of the same thing, which is therefore itself the only medium of their analogy, so that a knowledge of it is demanded in order to understand that analogy.” If regarded as an expression of the Universe, music “is in the highest degree a universal language, which is related indeed to the universality of concepts, much as they are related to the particular things.” Schopenhauer went on to say that music is the direct copy of the will itself. We might just as well call the Universe “embodied music as embodied will.”


…the sound of ‘star music’ will always elude rules, notation, recording, or reflection, because its truly magical, extratemporal quality is only present in the moment of its performance, and in the awareness of those who are really present.

Eduard Heyning


Cosmic consciousness is a shadow inside the Universe. It defines the vibratory nature of all the bits of experience that compose its music. Musicians like Eduard Heyning bent an ear to hear sounds of harmony externally and echoes within. How to make music in tune with the cosmos is their neverending quest. While, for some, the Universe displays a geometric structure, shaped like a dodecahedron with flat mirrors reflecting endlessly, for poets who are tamers of imagination, the Universe is a poem and humankind, a forest of walking brains. 


Nice complementary article by EarthSky posted on January 25th, 2021 with an artist's animation posted on YouTube from the Southern European Observatory.


If I was to say what you seek is already here. What you have longed for is written in every star and planet. Every mountain and valley. Your self-conscious thought bound to the light that it has seen when in your mind was manifested in a very majestic scene the image of every single thing. Everything has its place and its time like clockwork in thought that preexisted time. Consciousness is only after the sub-thought that you exist and I am existing, for I am implicit. “I don’t remember how I got here. I don’t remember where I came from. But when I get to where I am going, I will remember to hold my head up high. I may remember my birth, my life and death... but you will recall all the rest. Has this dream stopped?”

Hunter Anderson

Mircea Eliade, Two Tales of the Occult

Kripal, Authors of the Impossible on Frederick W. H. Myers

Johannes Kepler, The Harmony of the World, translated by Alistair Matheson Duncan, E. J. Aiton, Judith Veronica Field

Boethius, Boethian Number Theory, A Translation of the De Institutione Arithmetica by Michael Masi 

Arthur Schopenhauer, The World as Will and Idea

Eduard Hanslick's On the Musically Beautiful, A New Translation by Lee Rothfarb

Nice update by 

Share this post


Published on by Catherine Toulsaly


The overview presented in the previous post has set the stage for our next inquiry into our part of the Solar system. As we wait for the Large Synoptic Survey Telescope to be operational, the vast majority of Near-Earth Objects (NEOs) are presently discovered by a small number of dedicated surveys such as NEOWISE, the Catalina Sky Survey, and Pan-STARRS. The Arecibo Observatory in Puerto Rico that is now permanently closing played a big part in the planetary defence since it contributed to monitoring the close approach of asteroids, along with Goldstone DSS-14 and DARPA’s Space Surveillance Telescope. Coincidently, the Spitzer Telescope, whose mission included the study of asteroids, was also decommissioned earlier this year in anticipation of the launch of the James Webb Space Telescope in 2021.


Approximately 50 % of the objects are discovered before the closest approach and 50 % afterwards, primarily as the objects are approaching from the direction of the Sun and are not observable in the day-lit hemisphere using telescopic surveys.

Radar observability of near-Earth objects using EISCAT 3D


The current rate of discovery is far exceeding progress in physical characterization that is essential to help inform hazard assessment. The Solar system’s small bodies are often regarded as more primitive relics dating back to the early stages of the Solar system. The Near-Earth Objects, whose number is -- I recall -- at around 24 000, are predominantly replenished by leakage from the main asteroid belt. The threat posed by asteroid families is mitigated by the fact that the large icy-body reservoir of the Kuiper belt is bounded on the inside by Neptune’s ability to keep asteroids at bay, while objects in the main asteroid belt may be subject to minor dynamical erosion and potentially destructive collisional activity. 


Dedicated algorithms are in charge of orbit determination and risk assessment for any detected NEO, but their efficiency is limited in cases in which the object has been observed for a short period of time, as is the case with newly discovered asteroids and imminent impactors.

Impact Monitoring of Near-Earth Objects: review of classical results and new tools for the optimized follow-up of imminent impactors


Beyond the mere possibility of an asteroid falling on our heads, there seems to be a legitimate concern regarding the instability of the asteroid families. A disruption within one of them could have repercussions on the future of humankind. The problem is that each time an asteroid experiences a close encounter with another object, it impacts its path and evolution. Although a cataclysmic event on a global scale is unlikely, it is anticipated that small impactors rushing through the atmosphere in the form of fireballs will continue to occur.


Given the current data, it is estimated that a space object sized between 1.5 and 2 km represents a threshold for a global catastrophe, which could result in the death of even a quarter of the world’s population.

Near-Earth Objects (NEO) and other current space threats


A paper by Radosław Bielawski, published this year in Security & Defence Quarterly, observes that asteroids less than 50 to 100 meters across rarely impact the Earth as a single body. They instead explode in the atmosphere. Nevertheless, their detonation can still cause substantial damage. During the entry phase, the atmospheric friction causes objects to de­celerate and pick up temperature. Owing to their insufficient size, they enter the atmosphere as fireballs whose fragments may occasionally be found on the ground. 


Potentially Hazardous Asteroids (PHAs) are asteroids at a distance equal or less than 0.05 au, which is about twice the distance to the Moon. Apophis appears to hold a special status among potentially hazardous asteroids. On April 13th, 2029, it will pass at about 0.0002561 au, which is 1/10 of the distance to the Moon, less than 24 000 miles from the Earth, according to NEODyS-2 and JPL Small body database. For sure, it will be an amazing opportunity to watch and study a passing asteroid since it will be visible to the naked eye in Europe, Africa, and West Asia.


In a white paper published this year, Richard Binzel of MIT and over 40 scientists urge NASA’s Planetary Defense Coordination Office to plan for the appropriate investigations of Apophis during its flyby of the Earth.  An asteroid as large as Apophis coming that close to the Earth is, on average, a once-per-thousand-year event. It is estimated to be 5000 times more massive than the Chelyabinsk meteor that caused damage to nearly 7 500 buildings in 2013.


Apophis with a diameter of about 370 meters will be closer to us than orbiting geosynchronous satellites. While it is expected to pass by the Earth and the Moon safely, weather satellites and NASA observatories will be in the front row. Not only launcher stages and inactive spacecraft that are often left into orbits could pose the risk of impacting and contaminating celestial bodies such as Apophis, but the asteroid could potentially bump into space debris, setting off a chain of reaction.


The blue dots are the many man-made satellites that orbit the Earth (NASA/JPL-Caltech)

The blue dots are the many man-made satellites that orbit the Earth (NASA/JPL-Caltech)


Furthermore, the crumbling asteroid designated P/2013 R3 -- whose picture I published in my previous post -- got me wondering whether Apophis could break up and throw a few meteorites in our way. P/2013 R3 disintegration may have been caused by the effect of sunlight and internal fractures that were the result of past collisions. A paper suggested that a fireball observed over Kyoto on April 28th, 2018 was indeed produced by the nearby binary near-Earth asteroid (164121) 2003 YT.


P/2013 R3 (NASA, ESA, D. Jewitt (UCLA))

P/2013 R3 (NASA, ESA, D. Jewitt (UCLA))


Measuring seismic vibrations inside Apophis might warn us of any threat in that regard. We are -- as it was clearly stressed by the authors of the white paper -- still ill-informed of what impact, if any, Earth’s physical interactions could have on Apophis. Could they trigger a change in its orbit? The greatest uncertainty lies in our lack of knowledge of the internal structure of potentially hazardous asteroids. In order to measure seismic activity, plans should be made to place a seismometer on Apophis.


Beyond Apophis, among worldwide efforts to address space threats in the future, a 2019 paper reports the design, construction, and training of a relatively simple neural network aimed at classifying asteroids with the potential to impact the Earth over the coming 20 000 years. Another study evaluates the observability of Near-Earth Objects with the EISCAT 3D radar currently under construction in Northern Scandinavia, in particular for the detection and observation of mini-moons. 



The Near-Earth Object Surveillance Mission (NEOSM) is another NASA mission concept in the formulation phase designed to find and characterize the majority of NEOs that could cause severe regional damage. ESA is also developing the infrastructure for the NEOSTEL Fly-eye telescope that will provide by 2030 early warning for hazardous asteroids. Finally, a paper last month outlined a mission concept aiming to perform close flybys of a series of NEOs with a camera and a LIDAR on board of spacecrafts. Could such a concept be implemented by 2029?

Share this post


Published on by Catherine Toulsaly

Sometimes even writers who dwell too much on earthbound things feel a celestial pull, an invitation to a loftier perspective.

The Pull of the Sky, Jeffrey Jerome Cohen

Astérix and the Falling Sky, Goscinny & Uderzo

Astérix and the Falling Sky, Goscinny & Uderzo


Although the sky falling on our heads is not of immediate concern, fragments of comets and asteroids continuously bombard our planet. As of today, there are over 24 000 Near-Earth asteroids. Of those, less than 10 000 are larger than 140 meters in size and 891 are larger than 1 kilometer in diameter. On its Earth Impact Monitoring page, NASA lists the impact probability for some known objects that may pose a threat. In the near future, 2009 JF1’s trajectory is predicted to be the closest to Earth in May 2022. It is a small asteroid about 13 meters in diameter whose odds to hit Earth are calculated at 0.026%. While Bennu poses a threat 150 years from now, its diameter is half a kilometer, and its chance of Earth impact is higher at 0.037%. In the goal to demonstrate asteroid deflection for the first time, the binary near-Earth asteroid (65803) Didymos is the target of the DART spacecraft. The Double Asteroid Redirection Test (DART) mission will be launched in the summer of 2021 and will deliberately crash into the binary’s moonlet Dimorphos a year later to alter its speed. As a result, it is expected to change the binary’s trajectory.


NEODyS is an ESA-sponsored site with a risk list of 1128 Near-Earth asteroids. Just in the next 30 days, 20 known asteroids will move closer to the Earth. The Jet Propulsion Laboratory (JPL), a national research center managed for NASA by Caltech, provides orbit diagrams for their trajectory. Most objects today burn up in our atmosphere. Some, however, particularly those larger than a few meters, could pose a threat not only to the Earth but to other planets of the solar system. Every two years, asteroid experts from across the globe come together to simulate a fictional but plausible imminent asteroid impact on Earth.

2014 AA (NASA/JPL-Caltech/CSS-Univ. of Arizona)

2014 AA (NASA/JPL-Caltech/CSS-Univ. of Arizona)


While some disintegrate before our eyes, there are still objects unaccounted for that may be outside the range of observation, the limit of detection or the capabilities for identification, such as 2014 AA that hit the Earth’s atmosphere over the Atlantic Ocean about 20 hours after its discovery. While four, including 2014 AA, have reached the Earth’s surface over the past ten years, the asteroid named 2020 HS7 came close to the geostationary ring. Since the 14th of November 2020, another small asteroid, about 10-meter long, now designated 2020 VT4, holds the record of the closest non-impacting asteroid. Its closest approach happened about 370 km above the Pacific Ocean to the East of French Polynesia.


Hubble Witnesses an Asteroid Mysteriously Disintegrating ( NASA Goddard)

Hubble Witnesses an Asteroid Mysteriously Disintegrating ( NASA Goddard)

An asteroid’s brightness results from the scattering of sunlight by its surface. How bright the asteroid truly is depends on its size, shape, orientation, and surface scattering properties.

Photometric study for near-Earth asteroid (155140) 2005 UD



I have previously mentioned that asteroids are an incredible source of information in regard to any elemental and molecular signatures of life. Terrestrial impacts are believed to occur before the onset of significant environmental and biological changes. Most asteroids have irregular shapes. Scientists evaluate their brightness, geometric form, diameter and rotation period. The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) conducts an all-sky infrared survey to gather data for the past seven years. Some objects, though, have dynamical properties that fall outside the window detectable to NEOWISE. A manual search through over five years of NEOWISE survey data has resulted in the discovery of 299 more Near-Earth objects.

… our new finding suggests that the flux of extra-terrestrial bioavailable elements might also have influenced marine biogeochemical cycles, marine redox states, severe perturbations to Earth’s climate system, and the emergence of animals.

Asteroid shower on the Earth-Moon system immediately before the Cryogenian period revealed by KAGUYA





Evidence of cataclysmic events on the Earth fades away because of weathering and erosion. A massive global-scale erosion event coincident with major episodes of globally extensive “Snowball Earth” glaciation resulted in the almost complete absence of terrestrial craters older than 650 million years. Since the Earth-Moon system has been co-evolving over 4.5 billion years, asteroid showers have occurred not only on the Earth but also on the Moon. Traces of meteorites and lunar craters are evidence of those past events. Asteroid evolution models suggest that the contribution of kilometer-sized impactors from a large parent-body disruption would have reached their new level within a few tens of millions of years of the breakup events, with the wave of bodies perhaps receding after hundreds of millions of years. Disrupted asteroids within families provide opportunities to study disruption processes for which real-time observations are relatively lacking.

Locations of the 102 validated flashes observed by the NELIOTA project (ESA, NELIOTA)

Locations of the 102 validated flashes observed by the NELIOTA project (ESA, NELIOTA)


Since March 2017, ESA’s Near-Earth object Lunar Impacts and Optical TrAnsients (NELIOTA) has detected over one hundred flashes of light produced when asteroids collide with the lunar surface, where they are easiest to observe -- on the dark side of the Moon not illuminated by the Sun. A 2020 report studied 59 lunar craters whose production stretches over 3 billion years based on two models. The Eulalia family, considered to be the parent body of asteroids Bennu and Ryugu27, could have produced an impact spike between 830 and 800 million years ago, resulting in the formation of small lunar craters as well as on other terrestrial planets and satellites inside the asteroid belt. The paper concludes that an object 30 to 60 times greater in mass than the Chicxulub asteroid impactor -- that changed the course of our planet history 66 million years ago -- must have collided on the Earth around 800 million years ago. However, the report raises the possibility that some lunar craters, including Copernicus named after the famous astronomer, were actually formed around 660 million years ago when sporadic meteorite bombardment occurred across the whole Moon, possibly due to the disruption of asteroids.


Another report published last year suggested that the impact rate went up within the past 500 million years with an increase of the Earth and Moon impact flux by a factor of 2.6 about 290 million years ago. In comparison, there was a lower impact flux between 300 million and 650 million years ago. Besides the Eulalia family mentioned above, there is among many other groups of asteroids the Flora family, a primary source of present-day Near-Earth asteroids and Earth and Moon impactors. A 2017 paper found that 700-950 and 35-47 kilometer-sized asteroids struck the Earth and Moon, respectively, most within the first 300 million years after family formation, which happened at least one billion years ago. 


Not all end up passing by or burning up in the atmosphere. A tiny fraction of asteroids sticks around as they become temporarily captured by the gravity of Earth-Moon system. The capture is always temporary due to interactions with the gravity of the Sun and other massive solar system bodies.  An asteroid --known as Minimoon 2020 CD3 -- was captured by the gravitational field for two years until it appeared to have left the Earth-Moon system in mid-2020. It had a longer duration than the 9-month capture duration averaged over the minimoon population. Determining its origin remains unclear. 2020 CD3 may have been the product of the fragmentation of a larger parent asteroid from the inner Main Belt.


2003 SD220 during the asteroid's closest approach in more than 400 years and the closest until 2070 (NASA/JPL-Caltech/GSSR/NSF/GBO)

2003 SD220 during the asteroid's closest approach in more than 400 years and the closest until 2070 (NASA/JPL-Caltech/GSSR/NSF/GBO)

There are no future flybys by 2014 JO25 as close as this one for more than 400 years (NASA/JPL-Caltech/GSSR)

There are no future flybys by 2014 JO25 as close as this one for more than 400 years (NASA/JPL-Caltech/GSSR)

Share this post


Published on by Catherine Toulsaly


While science aims to understand which fundamentals of reality take part in the circle of concepts, philosophy addresses the indeterminacy of the boundary between agency, sentience, and consciousness at the core of the interactions between humans and their surroundings. In a 2020 article on sentience, agency, and ontological difference, Anthropologist Francesca Merlan writes that sentience is the capacity to feel, to experience, and to perceive subjectively, what then makes it different from consciousness? Moreover, if agency implies the ability to make choices in response to new and unforeseen circumstances, what then makes it different from free will?  


For an octopus, its arms are partly self - they can be directed and used to manipulate things. But from the central brain’s perspective, they are partly non-self too, partly agents of their own.

Other Minds, Peter Godfrey-Smith, 2016, p.103

Travelling Snake Dreaming in the Sandhills with Dancing, Clifford Possum Tjapaltjarri

Travelling Snake Dreaming in the Sandhills with Dancing, Clifford Possum Tjapaltjarri


To me, agency is, with entropy, one of the most difficult concepts to grasp. There is that which acts and that which is acted upon. The invisible flow of magnetic fields appears never to act, yet it acts upon everything in the Universe, influencing the paths of charged particles around us, the Earth, the solar system, and the galaxies.  The many kinds of agency encompass a range of possibilities within the Universe’s causal design. Borrowing the concept from the field of anthropology, agency entails more broadly the setting of physical associations, more or less durable connections, and crossroads where not only choices are made but “provisional repositories” are formed.


In the end, the debate over agency, sentience, and consciousness comes down to how individual organisms could have intrinsic goals, act on their own behalf, and choose their own course of action without some form of consciousness. A theory of agency would challenge the basis for panpsychism since it intends to explain the behavior of things such as a particle, a cell, or an insect. Researchers have been studying whether insects have sentience or simply agency. While some may point to the functional similarities between the insect brain and vertebrate midbrain, Johannes Hans van Hateren, for his part, argues that primordial forms of agency and goal-directedness have little to do with consciousness. On the one hand, it may be that our tendency to analyze, differentiate, and arrange things in a hierarchy forbids us to accept that consciousness is universal.  On the other hand, when Hateren observes in insects a lack of shared agency and social bonding, he rightly recognizes, I believe, consciousness as a relational concept.


Agency is also said to be the ability to control one’s own actions. How then do those control mechanisms work? The sense of agency, write the authors of a 2020 article on measures of agency, involves a kind of sensorimotor identification in which predictions of sensory consequences of a movement are confirmed by sensory feedback. Agents are able to discriminate their own movements in the absence of conscious awareness. Bodily sense and external sense of agency are defined as follows:


According to a bodily conception, the sense of agency is related to the performance of specific bodily movements, whereas according to an external conception, the sense of agency is associated with the planned environmental consequences of one’s action.

Thor Grünbaum, Mark Schram Christensen

Wild Orange Dreaming, Kaapa Tjampitjinpa

Wild Orange Dreaming, Kaapa Tjampitjinpa

we feel ourselves reduced to nothing, feel ourselves as individuals, as living bodies, a transient appearance of the will, like drops in the ocean, fading away, melting away into nothing… that we are, in some sense, one with the world, and thus not brought down, but rather elevated, by its immensity.

Arthur Schopenhauer


We, humans, do not submit to being alone in the Universe. We wish to save our vital or passional subjectivity by attributing life, personality, spirit, to the whole Universe. If consciousness is only the product of my imagination, should I agree that the Universe is simply a mechanical structure without a soul? Within spacetime, energy and gravity have coalesced to give form to the sentient Universe. Under the spell of gravity, the magnetic field around my heart and mind is woven into the fabric of spacetime. As I reflect on Merlan’s paper, I would take it one step further and argue that even the exchange between the Universe and human consciousness revolves around aspects such as the continuity between life and death, the fundamental ambiguity of human and nonhuman difference; and communicative relationships between humans and other entities such as when we are genuinely moved by birds, their movements and their songs. There is no solitude, only invisible chains of human and nonhuman kindred spirits.


Under the lid of the cosmic prison evolves the Earth around the Sun, populated by billions of beings and their inner selves, cloaked in disguise, with their face masked even in solitude.

Dreams of the Earth and Sky

Old Man's Love Story, Clifford Possum Tjapaltjarri

Old Man's Love Story, Clifford Possum Tjapaltjarri


Is the Universe sentient, or is all sentience attributable to “spirits”? What if stars could listen, planets could smell, and the entire Universe was populated by sentient beings?  The air I breathe is a sentient medium of transmission. Poetry attributes souls and infers sentience to the roaring wind, the flowing river, the leaves turning red, and a plant named Heal-all. It may be that stars and galaxies express their volition when electromagnetic fields are unwinding in space. Could the same components that sunk into Earth’s interior in the process of core formation and play a role in generating the Earth’s magnetic field have created my own body’s electromagnetic field and established a kind of spatial relation with entities around me? Although we learn nothing about what an electron is independently of what it does, writes Philip Goff, we are starting to grasp the full extent to which spatiotemporal relationships matter. If we are prepared to accept Universalism as when subjects always combine to make a further subject, it follows that for any group of material objects, the members of that group, being spatially related, determine a conscious subject.



The Moon hung naked in a firmament  Of azure without cloud, and at my feet Rested a silent sea of hoary mist. A hundred hills their dusky backs upheaved All over this still ocean; and beyond, Far, far beyond, the solid vapours stretched, In headlands, tongues, and promontory shapes, Into the main Atlantic, that appeared To dwindle, and give up his majesty, Usurped upon far as the sight could reach. Not so the ethereal vault; encroachment none  Was there, nor loss; only the inferior stars Had disappeared, or shed a fainter light In the clear presence of the full-orbed Moon, Who, from her sovereign elevation, gazed Upon the billowy ocean, as it lay All meek and silent, save that through a rift-- Not distant from the shore whereon we stood, A fixed, abysmal, gloomy, breathing-place-- Mounted the roar of waters, torrents, streams Innumerable, roaring with one voice! Heard over earth and sea, and, in that hour, For so it seemed, felt by the starry heavens. When into air had partially dissolved That vision, given to spirits of the night And three chance human wanderers, in calm thought Reflected, it appeared to me the type Of a majestic intellect, its acts And its possessions, what it has and craves, What in itself it is, and would become. There I beheld the emblem of a mind That feeds upon infinity, that broods Over the dark abyss, intent to hear Its voices issuing forth to silent light In one continuous stream; a mind sustained By recognitions of transcendent power, In sense conducting to ideal form, In soul of more than mortal privilege. One function, above all, of such a mind Had Nature shadowed there, by putting forth, 'Mid circumstances awful and sublime, That mutual domination which she loves To exert upon the face of outward things,




As I stumble upon Ascent of Snowdon from The Prelude by William Wordsworth, I remember climbing Mount Tai and Mount Emei and wonder whether the experience of the sublime defines the highest degree of symbiosis with the Universe, the same feeling that overwhelms us when we stare with amazement at space images. The inhomogeneity of space alluded to in my previous post brings us to an even more unsettling prospect that we may be residing inside a void. It is not enough to imagine ourselves on a floating planet; we may ponder with even more fright on the possibility that Laniakae is lost in a void, the so-called Keenan–Barger–Cowie Void. At the same time, such a scenario may put into question our current understanding of the standard cosmological model.  


Not only should we realize that what exists outside the correlation to our subjective experience is nothing but indeterminacy, but the very nature of that correlation between mind and matter, between Consciousness and the Universe is also unknown. Sentience may be a shared quality of autopoietic entities and aggregates that have the ability to sense and adapt to their environment. Is it that shared quality inside me that answers to the call of the white-throated sparrow? It may be that every speck of metaphysical dust interacts with us because, indeed, we feel more than we know.


Wild Potato Dreaming, Bill Stockman Tjapaltjarri

Wild Potato Dreaming, Bill Stockman Tjapaltjarri

people will differ in their guessed inferences: some might stop sentience at the lobster limit, others might stop at the beetle border – but why stop at all? If one demands a stop, the determining criterion must be established.

Peter Sjöstedt-H


Do all organisms have a minimum of subjective experience? Consciousness involves the emotion of time. From feelings to rational abstraction, it has evolved. Sentient beings are bodily forms of sensation, perception, volition, and consciousness. Earth is a body above which lies a thinking layer.  If sentience came before consciousness - as long as we differentiate one from the other – it has resulted from the fusion of passive and active dispositions, feeling and acting as entities respond to stimuli. Cosmic consciousness and the human consciousness rooted in the chatter between body, heart, and mind are consubstantial. 


Papunya: A place made after the Story, Geoffrey Bardon, The Megunyaeh Press

Children's Honey Bag Dreaming, Harry Tjangala

Children's Honey Bag Dreaming, Harry Tjangala

Share this post

The edge of knowing

Published on by Catherine Toulsaly

The edge of knowing

When the shadow with fatal law menaced me
A certain old dream, sick desire of my spine,
Beneath funereal ceilings afflicted by dying
Folded its indubitable wing there within me.

Luxury, O ebony hall, where to tempt a king
Famous garlands are writhing in death,
You are only pride, shadows’ lying breath
For the eyes of a recluse dazed by believing.

Yes, I know that Earth in the depths of this night,
Casts a strange mystery with vast brilliant light
Beneath hideous centuries that darken it the less.

Space, like itself, whether denied or expanded
Revolves in this boredom, vile flames as witness
That a festive star’s genius has been enkindled.

Sonnet: ‘Quand l’ombre menaça…’, Stéphane Mallarmé


Some concepts are magnets. Aesthesis, explains Alexander Wilson, is the “process by which seemingly necessary truths emerge from the compossibility of contingent events”. It is cognition’s interface with the unintelligible. Is there a reality beyond ourselves? For the sole purpose of this post, I will determine reality to be what we think we know. The transcendental correlationist, adds Wilson, “is forced to say that what exists outside the correlation is nothing but indeterminacy.” Our blurred vision, when faced with the absence of reality, fails to distinguish not just what is unknown but what is unimaginable. Aesthesis is the “genesis of the conditions of intelligibility, from which all of knowledge derives”. It is a translation process that entails a gradual transition from indistinct to distinct “corresponding to the progressive integration of otherwise free-floating elements that must be organized for the intelligibility to hold,” a conversion of the unthought into thought.


If thought is consciousness, thought can only be happening within a philosophy of ‘presence.’ Can we ever grasp what is on the other side of it in the non-phenomenal realm of non-being? Sixty-three posts later, I still run the risk of falling into the trap of reductionism. Indeterminism is on my mind. Each post has added a brick to the house of evolving possibilities, a window to its exterior walls. It is a knot I have tied on a rope I am holding on to as I climb my way up through thick clouds. If all models are necessarily partial representations of reality, then no matter how hard we try, no model of the Universe will ever completely reflect reality. There cannot be either a theory of everything.


In the puzzling relationship between Consciousness and the Universe, how to shed light on those indistinct pieces? Aesthesis “corresponds to the concrescence of differences.” It creates in my mind the image of a step-by-step guide into the ontology of a middle way, a meeting ground between non-being and being, a plunge into the abyss where existence and non-existence intersect, a passage where mirror-image opposites encounter. The ontology of the middle way is part of a threefold integrated reality in which Consciousness on one side of a boundary struggles to gain information on the other side each time that a narrow window has opened from one level to the next.

It is consolatory in not being categorical about ultimate realities while focusing on them as desirable. In other words, consolationism domesticates in the existential sphere the mathematical concept of probability.

Consolationism: A Postmodern Exposition, Ada Agada


In cognition’s interface with the unintelligible, the act of measurement is the point of interconnection between Consciousness and the unknown. The mind, when confronted with a lack of reality, relies on compensatory means to fill the holes. Probabilities are operational concepts, pieces of information necessary for a conceptual origination to happen, similar to other operational concepts such as time and energy that create reality out of the absence of reality. The fractal nature of knowledge reveals itself within a philosophy of ‘presence.’ A point of origin is the conceptual origination of a ‘stand-alone’ reality. A broken line represents a conceptual transition.


The edge of knowing

Aesthesis can now productively be construed as an integrated weave of constraints between acts of codetermination, measurement, observation, or entanglement, various encounters between aspects of the real in the construction of a web of compossiblities. Indeed, it has become clear that aesthesis is somehow inseparable from this division between the possible and the compossible, the contingent catastrophe that quasi-causes the divergence of our world from the ones it retroactively originates in.

Aesthesis and Perceptronium, Alexander Wilson, p.207


Cosmology is a ‘historical’ science that allows for the observation of rare events such as the merging of black holes. A missing component whose effects are observed on the rate at which the Universe expands was named “dark energy” by cosmologist Michael Turner.  Can it be explained by the presence of phantom fields, a theory of modified gravity, or the effect of quark confinement on the self-gravitational energy of quantum fluctuations? The inhomogeneity of space has hampered our ability to know, leading us to privilege what we perceive as reality: light and matter. A 2020 study has added results from void-galaxy cross-correlation to avoid bias in measurements and allow for the best measurement of dark energy.


Metaphysical nomological pluralism, writes Nancy Cartwright, is the doctrine that nature is governed in different domains by different systems of laws not necessarily related to each other in any systematic or uniform way. If this view applied to the whole Universe, no law, no organizational level could ever be predominant, and freedom precedes reality. On the edge of knowing, aesthesis is “neither intelligence, nor reason, nor agency, though it inevitably conditions their provisional axiomatizations.” A conversion of the unthought into thought leads to the invention of new concepts and a new vocabulary.


It is not self-organization itself, but rather something in self-organization that bootstraps variation in a seeking out of new potential intercessions and supersessions. Though aesthesis may terminate in territories and judgements, it does so only once the gap it instantiates is closed in its wake.

Aesthesis and Perceptronium, Alexander Wilson, p.105


Upon each emergent level of complexity, the curtains open, revealing yet another stage. Each level “depends on the reticulation of the parts,” writes Alexander Wilson, “which are synergistically bootstrapped into properties on the level of the exteriorized whole.” From Cartwright’s pluralism, we are led to Quentin Meillassoux’s hyperchaos, defined as “the effective ability for every determined entity, whether it is an event, a thing, or a law, to appear and disappear with no reason for its being and non-being,” And so doing, reality becomes discrete.


In multi-scale networks of interactions, any parts of a network at any level may affect every other part simultaneously. The Principle of Biological Relativity means that there is no privileged level of causality. Forms of causality contribute upward and downward in asymmetric ways. Although the higher levels may reflect the situational and functional logic of the whole system, the behavior of each part is influenced by its arrangement within the system. No directionality of causation can be assumed, providing the basis for using a more neutral term like a-mergence instead of e-mergence.  A 2019 paper on biological relativity concludes that the various levels communicate both randomness and order between each other. Bio-resonance, as described by Andrea Buiatti and Daniel Longo, is the interference between levels of organization. It corresponds to the interaction of different levels of organization, each possessing its own form of determination.


Aesthesis is thus the process of producing this togetherness in the disparate; it is the counterpart of discretization. It may be generalized as the first moment in the mechanism of emergence. It is the intercession that links together the preindividual aspects of parallel individuations, preparing their eventual supersession (the emergent phenomenon). It is a productive neutralization that prepares the terrain for the subsequent emergent resolution. The parts need to come together, to integrate, in order for the whole to lift off from them and retroactively constrain them. Like a kind of gravity that pulls the disparate together toward coalescence, aesthesis behaves as a transductive countertendency to discretization.

Aesthesis and Perceptronium, Alexander Wilson, p.114


History contributes to the form current and future dynamics of life systems manifest their intrinsic unpredictability. Unpredictability can also emerge from the simplest rule-based algorithm. I have mentioned the possibility, in the future, of free will in artificial intelligence. Already, there appears to be no way to predict what specific actions an AI might take to achieve its objectives, even if we know what those objectives are. Unpredictability, claims a 2019 paper on Unpredictability of AI, is an intuitively familiar concept. We can usually predict the outcome of standard physical processes without knowing the specific behavior of particular atoms, just like we can typically predict the overall behavior of the intelligent system without knowing specific intermediate steps. It is similar to the way emotions in primary and secondary layers are sometimes thought of as ‘unconscious’. We don’t have “clear introspective conscious access to their functioning,”  write Stephen Asma and Rami Gabriel in an Aeon article last year, since primary and secondary emotions “lack access consciousness.”


Along the Potomac on the Virginia side, the crescent moon is still high. Blue sky merges on the horizon. Ripples and circles rise and fall unpredictably on the water surface. They reflect sun rays piercing through the silvery mist, reminding me of Leonardo da Vinci’s drawings of fluid dynamics. Transfers of energy through waves and resonance occur from one event to the next. If time stops at the death of my physical body, will my soul be released in some form of energy the way red supergiants release upon their death vast amounts of energy heating interstellar dust and gas? Time and energy are a complementary pair within the flow of things. On the edge of knowing, poetry relies on feelings. The emotion of time is ubiquitous. It is the energy passed on when gluons bind quarks together and during the transfer of electrons from one molecule to the next. The Universe reveals itself by expressing itself and knows itself through every bit of feeling.


…those feelings, sculpted in the encounter between neuroplasticity and ecological setting, provide the true semantic contours of mind.

United by feelings, Stephen Asma and Rami Gabriel

The edge of knowing

The black rock enraged that the north wind rolls it on
Will not halt itself, even under pious hands, still
Testing its resemblance to human ill,
As if to bless some fatal cast of bronze.

Here nearly always if the ring-dove coos
This immaterial grief with many a fold of cloud
Crushes the ripe star of tomorrows, whose crowd
Will be silvered by its scintillations. Who

Following the solitary leap
External once of our vagabond – seeks
Verlaine? He’s hidden in the grass, Verlaine

Only to catch, naïvely, not drying with his breath
And without his lip drinking there, at peace again,
A shallow stream that’s slandered, and named Death.

Tomb (Of Verlaine), Stéphane Mallarmé


Based on the knowledge of the present, could we predict the future outlook of the US presidency? Today live among us the future presidents of generations to come. If any child born this year could potentially be one of them, in reality, the choice is neither predictable nor random. Unpredictability and determinism occur in combination with each other. We only have the potential to shape the present that will determine the leaders of tomorrow.


A-Mergence of Biological Systems, The Routledge Handbook of Emergence, Noble R., Noble D. (2019)



Share this post

A State of Matter

Published on by Catherine Toulsaly

I have ancient eyes
Musing chapters of history
And longings once

Embraced while
Reminiscing more noble
Epochs and questions

Yet to be answered as I
Stalk the shadows of inner
Places teasing rationality

I am the remnant
Paradigm of past futures
And the future past

The Remnant, Rob Taylor, Noesis: A Poetic Journey into the Spirituality of Social Discord



Lee Smolin might agree with Alexander Wilson, the author of the book entitled Aesthesis and Perceptronium on the entanglement of sensation, cognition, and matter, that “realism implies a rigor of thought that accepts both its finitude and its incompletion and embraces the indistinction that swarms around the intelligible.” The word perceptronium is borrowed from Max Tegmark’s 2014 paper entitled Consciousness as a state of matter. Tegmark lists six states of matter. In addition to gas, liquid, and solid, the fourth is memory that allows for the retention of “a large repertoire of long-lived states or attractors”. The fifth is computronium or programmable matter, “the most general substance that can process information as a computer”. And the sixth is perceptronium, “the most general substance that feels subjectively self-aware”, that is the state of consciousness. Wilson and Tegmark fall under Smolin’s category of realists. Tegmark explores how to distinguish conscious matter from other physical systems. To that end, he defines four basic principles: information, integration, independence, and dynamics. The latter refers to time dependence. Independence means that something within dominates rather than something on the outside. There is a paradox, writes Max Tegmark, called the Quantum Zeno Paradox, in that if we decompose the Universe into maximally independent objects, then all change grinds to a halt.


We understand how memory plays a role in the way consciousness operates. As Giuseppe Longo and Maël Montévil wrote, it essentially refers to a “conscious reconstruction” of something that was experienced. What is even more fascinating is how memory is an essential aspect of the life of matter. While timelessness creates in my mind the image of an infinite state “brought to a halt”, memory arises from the spatiotemporal locality. Non-locality and the absence of memory appear to be what differentiates time from timelessness. Is there intentionality on the part of matter in the way it displays memory?  In a 2018 paper on memory formation in matter, memory is defined as follows:


Memory connotes the ability to encode, access, and erase signatures of past history in the state of a system. Once the system has completely relaxed to thermal equilibrium, it is no longer able to recall aspects of its evolution. The memory of initial conditions or previous training protocols will be lost. Thus many forms of memory are intrinsically tied to far-from-equilibrium behavior and to transient response to a perturbation.



Memory and time are intertwined because the concept of memory implies a time of retention, whether it be short or long. The experience of one second on Earth is somewhere in the Universe the memory of a million years. There is a countless number of ways that matter displays memories. The paper quoted above lists, among others, the memory of largest input and the memory of duration. Our behavior and that of matter may also show the memory that only knows one direction, a time running forwards. There are also the ‘return-point” memory and the memory from cyclic driving, both evocative of loops of temporalities, biological and cosmological cyclicities. 


In addition, there are ‘multiple transient memories’ when memories of multiple values are retained, “but only before the transient self-organization has finished.” After that, memory loss occurs. The “very process of reaching equilibrium erases the memory of previous training”. Multiple transient memories, I feel, play a role in scale transformations, in the fractality of the Universe and Consciousness. Other ways that matter experiences memory include shape memory, memory through path reversal such as echoes and associative memory.


Time remembers seasons. The Earth remembers its orbital path around the Sun. The weather remembers clouds. Plants open and close, remembering the time of day and year. Can consciousness exist outside memory? An electron, writes Natesh Ganesh in a paper on a non-equilibrium thermodynamic framework of consciousness, cannot be conscious since it is not capable of memory. However, in his paper on dissipative adaptation, Jeremy England refers to the memory of a collection of assembling particles that appears to have self-organized into a state that is ‘well adapted’ to the environmental conditions. He explains that the most durable and irreversible shifts in configuration occur when the system happens to be momentarily better at absorbing and dissipating work. With the passage of time, the ‘memory’ of these less erasable changes accumulates preferentially. As for the brain, the system stores experiences and learns from them so long as its memory updates itself with new events shedding light on previous ones. Consciousness, I feel, is a by-product of evolution that absorbs the lessons of time with the input of memory.



Which comes first? Images or ideas? They are part of a shared pool of memories. As I looked at Wheeler’s Universe, the first image that came to mind was that of the snake eating its tail. Coincidentally, the same picture was found four months later at the end of Kerri Welch’s book and was described by Alexander Wilson at the beginning of his book. It made me wonder whether the ancient symbol of ouroboros was at the root of Wheeler’s Universe in the first place. As I reflected on Kerri Welch’s book, I realized I had been too focused lately on the concept of time in disregard for a more balanced approach towards time and space. I thought I had to put the Humpty Dumpty of spacetime back together. Ironically, Alexander Wilson uses the same image from that popular nursery rhyme at the beginning of his book. To some of you, those two anecdotes may be insignificant. To me, they are drawn from the well of our collective memory.


Had I the heavens' embroidered cloths,
Enwrought with golden and silver light,
The blue and the dim and the dark cloths
Of night and light and the half light,
I would spread the cloths under your feet:
But I, being poor, have only my dreams;
I have spread my dreams under your feet;
Tread softly because you tread on my dreams.

Aedh Wishes for the Cloths of Heaven, W. B. Yeats


As a poet, I can only repeat that images trigger stories and connections that open the gate to a more intuitive approach. A patchwork of concepts spells out in a series of images. Drawn to invisible flows rather than to physical entities, I respond to them by writing.  I can only convey the mental path that takes me to this post today. I know that it echoes others’ intuition and sensibility. Tim Palmer alluded to the possibility that ideas may mostly already exist, but in a completely separate setting. We ought to take those pre-existing images from their usual setting and transplant them into new territories. Words have memories too. They echo a past usage, a historical context.


Time drops in decay
Like a candle burnt out.
And the mountains and woods
Have their day, have their day;
But, kindly old rout
Of the fire-born moods,
You pass not away.

The Moods, W. B. Yeats


Why would consciousness be a state of matter? Whether it be the material body of a cell, a plant, a star, or a galaxy, matter bears the mark of memory in whatever way it may be. Cosmic consciousness may be a memory sometimes muffled and other times uttered of past, present, and future. Wheeler is quoted to have said that not until you start asking a question, do you get something. To that, Augustine could have added that if no one asks me, I know. If I wish to explain it, I cannot because that ‘something’ may not be what we expect, thereby inviting more questions. 




Share this post

<< < 1 2 3 4 5 6 7 8 9 > >>