All the many layers

Published on by Catherine Toulsaly

Titan's many layers (NASA/JPL/Space Science Institute)

Titan's many layers (NASA/JPL/Space Science Institute)

Very well, you may smile at this; but you must admit that the model of the world developed here is at least a possible one… It also gives an incentive, not only to speculation but also to experiments…

Ludwig Boltzmann, Lectures on Gas theory

I have felt before that imagination is a double-edged sword, lighting up the path to reality and distorting it at the same time. While we may feel mesmerized by the imaginative power of others, we know our own to be involved in a tug-of-war with reason.

The back-and-forth between attractors and repellers in the three circles of dance left in my mind the image of individual streams of time, each with their own sense of being. While we follow a time path toward the Great Attractor, those in the zone of influence of the Dipole Repeller, who feel the repulsion of the Cold Spot Repeller, may be embarked in a time channel flowing in the opposite direction. Ludwig Boltzmann alluded briefly to a scenario in which processes would go in the opposite direction and living beings separated from us by aeons of time and spatial distances would feel the passing of time differently from us. 


Hans Reichenbach contemplated in more detail the possibility that after “reaching a high-entropy state and staying in it for a long time," during which “living organisms cannot exist," the Universe would enter a “long downgrade of the entropy curve, then, for this section, time would have the opposite direction.” He defined supertime in a similar way as Kerri Welch writes about timelessness. It has no direction, “only an order, whereas it contains individual sections that have a direction, though these directions alternate from section to section.” It would forever be unknown to the inhabitants caught in individual sections that their direction is different from ours. For all that we know, we could be unaware that such fated circumstances occurred before us. That no living organisms had existed in the time gap prior to our existence would explain the memory loss of a time in the opposite direction, wiped out from the conscious realm. 


Full moon

Full moon

Time, a recurrent subject in the dialogue between Consciousness and the Universe, is deeply embedded in our intuition. If the concept of existence cannot be applied to the quantum Universe where there is no “either-or,” I can’t imagine time being part of the picture either. If we could perceive nonclassical superpositions, we would see that any quantum state is a correlation of another. Timelessness and nonlocality paint in words the quantum Universe. Probabilities are the currency in which information circulates.

Frozen pond

Frozen pond

At the intersection of the quantum world and the macroscopic Universe is the field of statistics.  If we look at the essence of life, it is a statistical improbability on a colossal scale.“The true explanation for the existence of life,” Richard Dawkins writes, “must embody the very antithesis of chance.” It doesn’t mean that we need to look for answers in the realm of the improbable,  but to ‘tame’ chance means to break down the very improbable into less improbable small components. Peter Hertel argues, “There are no hidden variables”. The more we break down the very improbable, the more we mate quantum events to respect certain probabilities. When we say that quantum processes are ruled by probability, there appears to be a probability scale or distribution that we are made aware of. But if such a scale or distribution exists, it may be all about our own expectations.

Calculating expectation values is the task of quantum theory, not more, not less.

Peter Hertel, Quantum Theory and Statistical Thermodynamics

While probability, I recall, is said to be an operational concept, a philosophical category, decoherence and collapse represent, on the other hand, a technical approach more than a philosophical point of view. They are key concepts in the quantum-to-classical transition. Decoherence serves as a human tool that allows the conscious mind to determine how and when the quantum probability distributions approach the classically expected distributions. I will come back to the concept of collapse at some point in the future. But for the time being, I’ll focus on what decoherence means.


Wojciech H. Zurek, Decoherence and the Transition from Quantum to Classical—Revisited

Wojciech H. Zurek, Decoherence and the Transition from Quantum to Classical—Revisited

Decoherence, Dieter Zeh writes, is the dynamical dislocalization of quantum mechanical superpositions — of what is “somehow all at once” — through the formation of entanglement of any system with its unavoidable environment. It describes, Maximilian Schlosshauer adds, how entangling interactions with the environment influence the statistics of results of future measurements on the system. However, entanglement isn’t just a statistical correlation between local objects. It becomes reality itself. 

It is generally understood that a measurement involves an amplification of a microscopic superposition into the macroscopic realm by means of entanglement, followed by decoherence by the environment…

The Two-Time Interpretation and Macroscopic Time-Reversibility

Environmental interferences bind together time and phenomena. Because quantum systems are never completely isolated from their environment, Schlosshauer explains, when a quantum system interacts with it, what it becomes entangled with is a large number of environmental degrees of freedom. This entanglement influences what we can locally observe upon measuring the system. In the interactions with the unavoidable environment, not just matter and the conscious mind exist, but the information channel — part of past and present information on which path was taken — is also known.


Bits of time perspectives tenaciously endure. If it were not for the second law of thermodynamics under which the Universe operates and without causality, will time still slip away in the macroscopic Universe? The term coarse-graining was introduced by Boltzmann in 1872 in the context of thermodynamics. While quantum phenomena provide a source of entropy — defined as entanglement entropy — it is distinct from the classical one generated by coarse-graining. Any particular event may be an instance of a lot of different coarse-grained events, Antony Eagle argues. Carlo Rovelli uses the concept of coarse-graining to highlight how interactions within the Universe creates the perspectival aspect of time. 


Arrows of perspectival time derive from the quantum Universe. Superpositions, though, do not cease to exist, even though they are not there anymore. From neither-nor, coherence and decoherence take turns in harmony. My mind wanders as it visualizes layers of time and space, all at different decay times. In the kinematically nonlocal Universe where time-dependent scenarios emerge, the collective kinetic energy bounces around and back.  




Hans Reichenbach, The Direction of Time 

Julian Barbour, The Janus Point 

Richard Dawkins, The Blind Watchmaker

To be informed of the latest articles, subscribe:
Comment on this post